• “There was a time not so long ago when a thousandth of a percent or a hundredth of a percent of a foreign body in a chemical mixture was looked upon merely as an incidental inclusion which could have no appreciable effect on the characteristics of the substance,” Frank Jewett, the first president of the Labs, explained. “We have learned in recent years that this is an absolutely erroneous idea.”
  • By the early 1940s, however, Scaff and Ohl were increasingly sure that the two differing types of silicon were the product of almost infinitesimal amounts of different impurities. Atoms within semiconductors bond easily with a number of other elements. Scaff and his colleagues knew that when they cut n-type silicon (atomic number 14) into smaller pieces on a power saw, for instance, they could smell something they were sure was phosphorus (atomic number 15). None of the measurement equipment could pick up the taint, but their noses could.16 Later, the men also determined that p-type silicon often had faint traces of the elements aluminum (13) or boron
  • The formal purpose of the new solid-state group was not so much to build something as to understand it. Officially, Shockley’s men were after a basic knowledge of their new materials; only in the back of their minds did a few believe they would soon find something useful for the Bell System. In many respects their work was orders of magnitude more difficult than what usually went on at the Labs. Some years later, the semiconductor historians Ernest Braun and Stuart Macdonald would note that “everything in a solid happens on such a minute scale that not even a microscope, even an electron microscope, can resolve the elementary processes. The scientist must operate at a level of abstraction of which the untrained mind is not capable in order to visualize processes which cannot be seen.” So the theorists at Bell Labs worked on blackboards, attempting to “see,” at a subatomic level, the surfaces and interiors of semiconductor crystals; the experimentalists, in turn, tested the theorists’ blackboard predictions at their lab benches with carefully calibrated instruments that recorded what happened within tiny pieces of silicon or germanium set on a breadboard—a wooden plank with holes—and wired into battery-powered circuits. Then the theorists would in turn try to interpret the data that emerged from the experimentalists’ attempts to investigate the theorists’ original ideas.
  • An irony, at least for that moment, was that Shockley’s phantom invention (the junction transistor) had improved upon another invention (the point-contact transistor) that wasn’t useful in any meaningful sense of the word. Lest anyone forget, the point-contact transistor was a device that had never been manufactured, had never been sold, and was still so secret that perhaps only a few dozen people in the world knew it existed.
  • Another example: Around the time Kelly was giving his speech to the phone company executives, a metallurgist named Bill Pfann was mulling over how to raise the purity of germanium to improve it further for transistor production. Pfann had returned to his office after lunch—“I put my feet on my desk and tilted my chair back to the window sill for a short nap, a habit then well established,” he recalled. He had scarcely dozed off when he suddenly awoke with a solution. “I brought the chair down with a clack I still remember,” he said.43 Pfann envisioned passing a molten zone—a coil of metal, in effect, creating a superheated ring—along the length of a rod of germanium; as the ring moved, it would strafe the impurities out of the germanium. Kelly would eventually tell people that Pfann’s idea—it was called “zone refining,” and was an ingenious adaptation of a technique metallurgists had used on other materials—ranked as one of the most important inventions of the past twenty-five years. Kelly didn’t tell people it resulted from a man sleeping on the job. The process allowed the Labs’ metallurgists to fabricate the purest materials in the history of the world—germanium that had perhaps one atom of impurity among 100 million atoms.44 If that was too hard to envision, the Labs executives had a handy analogy to make it even more clear. The purity of the materials produced at Bell Labs, beginning in the early 1950s, was akin to a pinch of salt sprinkled amid a thirty-eight-car freight train carrying in its boxcars nothing else but sugar.
  • Kelly never mentioned the word “innovation” in his speech. It would be a few more years before the executives at Bell Labs—especially Jack Morton, the head of transistor development—began using the word regularly.4 What he went on to describe in London, though, was a systematized approach to innovation, the fruit of three decades of consideration at the Labs. To Kelly, inventing the future wasn’t just a matter of inventing things for the future; it also entailed inventing ways to invent those things. In London, Kelly seemed to be saying that Bell Labs’ experience over the past few years demonstrated that the process of innovation could now be professionally fostered and managed with a large degree of success—and even, perhaps, with predictability. Industrial science was now working on a scale, and embracing a complexity, that Edison could never have imagined. Please listen, Kelly was telling the Europeans. He had a formula.
  • Bell Labs employed thousands of full-time technical assistants who could put the most dedicated graduate students to shame. Such assistants sometimes had only a high school diploma but were dexterous enough, mentally and physically, that PhDs would often speak of them with the same respect they gave their most acclaimed colleagues. The TAs, as they were known, formed a large subculture—a stratum parallel to the one formed by the Labs’ esteemed scientists—where they would exchange valuable information among themselves over lunch. “They were the keepers of practical information,” John Rowell, an experimental physicist, recalls.6 “They knew secrets, tricks. And they knew all this lore about what had been done in the early days.” The best of the assistants had the same talents that Walter Brattain and other physicists would idealize, a natural ability to take apart car engines or radios and put them back together, an ability that at Bell Labs might translate into a gift for growing crystals, preparing the surface of a metal for a contact, or constructing experiments.7
  • So now there were transistors, the horn antenna, the traveling wave tube, solar cells, and the maser. Even with the right electronic components, though, communications satellites weren’t going anywhere yet. There was still no proof that aeronautical engineers had developed rockets that could propel the idea into space. Proof arrived dramatically in October 1957 when the Soviet Union launched its Sputnik satellite.6
  • He still had plenty to do. All during his work on satellites, for instance, Pierce had become more and more involved with electronic and computer-generated music. Along with his colleague Max Mathews, Pierce and some Labs researchers had compiled an album of computer-programmed music, released by Decca Records, that they’d created on a primitive IBM 7090 computer. The music was intriguing and nearly unlistenable—beeps and blips, mainly, interspersed with shards of classical melodies and eccentric diversions. The Labs scientists called it Music from Mathematics. Pierce sent unsolicited copies of the record, along with an enthusiastic cover letter, to the composers Leonard Bernstein and Aaron Copland.45
  • The transistor’s greatest value was not as a replacement for the old but as an exponent for the new—for computers, switches, and a host of novel electronic technologies.
  • It was perhaps understandable, moreover, that a breakthrough in the creation of pure glass fibers wouldn’t come from an organization such as Bell Labs, where materials scientists were experts on the behaviors of metals, polymers, and semiconductor crystals. Rather, it would come from a company like Corning, with over a century of expertise in glass and ceramics.
  • Ring and Young hadn’t used the word “cellular” in their presentation. Nevertheless what they outlined—in the honeycomb of hexagons and repeating frequencies—was exactly that. Those hexagons were cells.
  • And what about competition? It is now received wisdom that innovation and competitiveness are closely linked. Companies that are good at innovating are good at competing in the market; the uncompromising nature of the market, in turn, is a powerful force on companies to innovate. But Bell Labs’ history demonstrates that the truth is actually far more complicated. It also suggests that we tend to misinterpret the value of markets. What seems more likely, as the science writer Steven Johnson has noted in a broad study of scientific innovations, is that creative environments that foster a rich exchange of ideas are far more important in eliciting important new insights than are the forces of competition.18 Indeed, one might concede that market competition has been superb at giving consumers incremental and appealing improvements. But that does not mean it has been good at prompting huge advances (such as those at Bell Labs, as well as those that allowed for the creation of the Internet, for instance, or, even earlier, antibiotics). It’s the latter types that pay to society the biggest and most lasting dividends. And it was almost always the latter types that Kelly and Pierce and Baker were striving for.
  • There was no way around the conclusion. Pierce and his friends were making ideas and things that would either disappear in an instant, or would be absorbed into the ongoing project of civilization. He feared that any memories of the makers would perish, too. “I am afraid that there will be little tangible left in a later age,” Pierce wrote of his world at Bell Labs, “to remind our heirs that we were men, rather than cogs in a machine.”