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Abstract
The curse of dimensionality, which has been widely studied in statistics and
machine learning, occurs when additional features causes the size of the
feature space to grow so quickly that learning classification rules becomes
increasingly difficult. How do people overcome the curse of dimensional-
ity when acquiring real-world categories that have many different features?
Here we investigate the possibility that the structure of categories can help.
We show that when categories follow a family resemblance structure, people
are unaffected by the presence of additional features in learning. However,
when categories are based on a single feature, they fall prey to the curse and
having additional irrelevant features hurts performance. We compare and
contrast these results to three different computational models to show that
a model with limited computational capacity best captures human perfor-
mance across almost all of the conditions in both experiments.

Introduction

Despite the fact that category learning is logically difficult in many ways, people
easily and naturally learn real-world categories. Quine (1960) identified one well-known
problem, originating from the fact that the category referent for any particular word is
under-determined and could be any from an infinite set of possibilities. This is an example of
the problem of induction (e.g., Goodman, 1983), which concerns the difficulty in identifying
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how to generalize when there are a potentially infinite set of possible bases to do so. The
problem of induction, in its different forms, has been widely studied within cognitive science.
Proposed solutions often center around the existence of inductive biases, although the exact
nature of these biases remains a debated issue (see, e.g., Markman, 1989; Landauer &
Dumais, 1997; Griffiths, Kemp, & Tenenbaum, 2008; Chater, Clark, Goldsmith, & Perfors,
2015; Minda, 2015). In this paper, we focus on a less studied but related problem known as
the curse of dimensionality. It is similar in that it is a fundamental problem of learnability,
but different in that it relates to the specific problem of learning in high-dimensional spaces
or with a large number of features. We show why the acquisition of real-world categories
should be difficult due to the curse of dimensionality, but propose that the structure of
real-world categories may alleviate the curse for humans, at least in many situations.

The curse of dimensionality has been well-studied within statistics (e.g., Bellman,
1961; Donoho, 2000) and machine learning (e.g., Verleysen & François, 2005; Keogh &
Mueen, 2011), and has a number of interesting and widespread effects. Within computer
science, the curse of dimensionality means that if the amount of data on which to train a
model (e.g., a classifier) is fixed, then increasing dimensionality can lead to overfitting. This
is because as the space grows larger, the examples themselves grow ever sparser; the only
way to avoid the issue is to bring in exponentially more data for each additional dimension.
In statistics and mathematics, the curse means that it is not possible to numerically optimize
functions of many variables by exhaustively searching a discretized search space, thanks to
the combinatorial explosion of parameters to explore.

A similar problem arises in the domain of category learning: as we consider categories
with more and more features, the size of the possible feature space and number of examples
required to fully learn a category grows extraordinarily quickly. For objects with N inde-
pendent binary features, there are 2N possible examples and 22N possible ways of grouping
these objects into two distinct categories. The number of possible category structures grows
at a double-exponential rate, as a function of the number of independent features used to
describe stimuli (Searcy & Shafto, 2016). As a result, even for moderate values for N , learn-
ing categories should be extremely difficult. For instance, items with 16 possible features
of two possible values each yields 65536 possible exemplars.

Most real-world categories have a large number of available features for categoriza-
tion (Rosch, 1973), which suggests that – in theory at least – the curse of dimensionality
means that acquiring natural categories should be a difficult learning problem. Yet people,
including children, can learn real-world categories with relative ease, often based on only a
few exemplars. How do people accomplish this feat?

We know surprisingly little about the answer to this question. Most experimental
work in category learning has not run into the problem of the curse of dimensionality,
either because studies have used categories that people have already learned or because
they tested categories using stimuli with only a few, highly salient features (e.g, Shepard,
Hovland, & Jenkins, 1961; Medin & Schaffer, 1978; Nosofsky, 1986). Although this body
of work has substantially contributed to our understanding of category learning, it remains
an open question how learning is affected when there are a large number of features.

While some studies in the category learning literature have used stimuli with a large
number of features (e.g, McLaren, Leevers, & Mackintosh, 1994; Wills & McLaren, 1997,
1998; Jones, Wills, & McLaren, 1998), the focus of these particular studies was not directly
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related to how varying the number of features impacts learning. Furthermore, the limited
set of studies that have investigated category learning with varying numbers of features have
yielded conflicting results, with some studies finding that additional features impair learning
(Edgell et al., 1996), others finding that they facilitate learning (Hoffman & Murphy, 2006;
Hoffman, Harris, & Murphy, 2008), and others finding that they have no effect on learning
at all (Minda & Smith, 2001), or that they do both (Bourne & Restle, 1959).

How can we resolve this apparent discrepancy? One possibility is that each of these
studies differ in the kinds of category structures being learned. After all, the curse of dimen-
sionality stems from having so many possible stimuli configurations in a high-dimensional
space that it is difficult to learn which set of features people should use for classification.
This should lead to the greatest inefficiency when most of the possible features are not
predictive of category membership and only one or a few matter, as in Walker and Bourne
(1961) and Edgell et al. (1996). By contrast, if all features are predictive to some degree
– especially if they are not perfectly correlated with each other – then additional features
should be beneficial, or at least not harmful (Hoffman & Murphy, 2006; Hoffman et al.,
2008; Minda & Smith, 2001). This possibility is especially interesting given the fact that
most real-world categories have precisely this sort of family resemblance structure (Rosch
& Mervis, 1975; Murphy, 2002).

This hypothesis – that a family resemblance category structure may mitigate the
impact of the curse of dimensionality, but that other kinds of category structures may not –
appears plausible on its face, but to date no studies have tested it. The goal of the current
paper is to examine this hypothesis by manipulating category structure and the number of
features while holding other factors constant. Our results do indeed suggest that people do
not succumb to the curse if the categories follow a family resemblance structure. However,
if only a single feature is relevant among a set of features for categorization, the curse of
dimensionality affects humans. We argue that the pattern of performance reflects capacity
limitations that prevent people from learning from and using more than a few features at a
time. As a result, learning is impaired where only one or a few features are predictive, but
it is not affected when many different features are all predictive (as any given feature will be
similarly useful). We support this interpretation by a comparison of several computational
models with different assumptions about representation and capacity limitations, and we
find that human performance is best fit by a model with limited capacity for learning.

Experiment 1

We addressed two questions in this experiment. First, how does learning performance
change as the number of features increase? Second, to what extent does the structure of
the category influence this learning? We therefore systematically manipulated the number
of features and the manner in which categories were structured within the context of a
standard supervised learning task.

Method

Participants. 886 participants (496 male, 388 female, 2 other) were recruited via
Amazon Mechanical Turk. This is a relatively high number of participants because we
ran two experiments with slightly different methodologies (described below) but pooled the
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Figure 1 . Example stimuli, displaying two instances from each of the three possible Dimensionality
conditions (4, 10, and 16, from left to right). Features were binary and correspond to the legs of the
amoebas. Together, the two 16-feature examples show all possible feature values.

results since they were qualitatively identical. Participants ranged in age 18 to 76 (mean
34.2). They were paid US$2.00 for completion of the experiment, which took roughly 12
minutes. Data from an additional 42 participants were excluded from analysis, either from
failure to complete the task (37 participants) or participating in a pilot version of the study
(5 participants).

Design. The experiment presented people with a supervised category learning prob-
lem, in which they were asked to classify an amoeba stimulus as either a bivimia or lorifen.
Each amoeba consisted of a circular base with a set of binary features (legs). The full set
of 16 unique pairs of features are shown on the two stimuli in the right column of Figure 1.

Nine experimental conditions were created by manipulating the Dimensionality of the
stimuli and the Structure of the category in a 3 × 3 between-participants design; people
were randomly assigned to each condition. The three levels of Dimensionality reflect the
number of binary features present on the stimuli: 4-feature (N = 302), 10-feature (N
= 277), or 16-feature (N = 307). For the lower-dimensionality conditions, the set of
displayed features were a randomly selected subset of the features used in the 16-feature
condition. The position of features on the amoeba were randomized differently for each
participant.

The three category Structures were designed in the following way. In every condition
there was one feature (chosen randomly) that was 90% predictive of the category label,
such that 90% accuracy could be achieved by using that feature alone. However, the pre-
dictiveness of the other features differed as a function of Structure condition. In the single
condition (N = 294), all other features were completely non-predictive (i.e., the value of
that feature predicted a given label 50% of the time). As such, the best performance in the
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Figure 2 . An example of a trial from the 16-feature condition. Participants were asked to classify
the amoeba as either a bivimia or a lorifen. In one version of the experiment, a green timer on the
right was displayed to incentivize participants to respond faster for additional points, which they
were given for correct answers only. Another version of the experiment was also run that did not
include the timer.

single condition would be achieved by identifying the single predictive feature and making
categorization decisions using only it. By contrast, in the all condition (N = 301), all of the
features were 90% predictive, matching a family resemblance structure. As a consequence
the best possible performance is achievable by aggregating the information provided by all
features. Finally, in the intermediate condition (N = 291), the other features were 70%
predictive. Thus, one feature was most diagnostic but it would be theoretically possible to
achieve better performance by using all of the features in concert.

Procedure. The experiment consisted of five blocks of 20 learning trials each, re-
sulting in a total of 100 trials. On each trial people were presented with an amoeba as
shown in Figure 2 and were instructed to classify it as either a bivimia or a lorifen.1 People
received points for correct answers but did not lose points for incorrect ones. In one version
of the experiment (N = 439) people were given as much time as they wanted to respond; in
the other (N = 447), they were still given as much time as they liked but they saw a timer
(the green bar on the right of Figure 2) that slowly decreased, and they received more points
for faster answers. There were no differences in performance between these two versions so
the data was pooled and results reported are from the combined dataset2.

Participants were given feedback which was displayed for three seconds. It consisted
1In all conditions, the stimuli were generated probabilistically and independently of one another, rather

than pre-generating 100 specific stimuli and showing the same ones to everybody. To perform this, one of
the two categories was randomly selected on each trial, and then the features of the stimulus were generated
according to the conditional probabilities based on the category structure for that condition.

2For the main analyses reported in this paper, we performed a model comparison between a model with
timer as an additional discrete predictor and model without. Results from this model comparison for both
experiments produced Bayes factors that favoured the models which did not include an effect for timer.
This suggested that the presence or absence of the timer had little effect on participant’s accuracy in the
task, so it was sensible to pool the data into a single dataset.
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Figure 3 . Accuracy in Experiment 1. Human learning across the Dimensionality and Structure
conditions. While learning within the all condition was unaffected by the number of features, more
features led to poorer performance in the single and intermediate categories. Error bars depict
95% confidence intervals, and the dotted line reflects chance performance.

of a correct or incorrect message, the number of points earned, the correct category label, and
a change to the color of the circular base of the amoeba to indicate category membership
(blue for bivimias and purple for lorifens). Before the next trial was displayed, a blank
screen was shown for one second. At the end of each block of 20 trials, people were given
a short summary of their performance, showing them their accuracy and points earned in
the current block and all previous blocks.

Results

Participants learned well in all conditions, with accuracy increasing across training
block (Figure 3). We quantified this effect through the use of Bayesian mixed effects model
comparison in which we compared a baseline model that contains only a random intercept
for each participant to a model that includes a linear effect of Block.3 The Bayes factor for
this comparison (BF > 1077 : 1) overwhelmingly favors the model that includes an effect of

3All mixed effects models in this paper assume a random intercept for each subject. Bayes factors were
calculated using the default parameters (Rouder, Morey, Speckman, & Province, 2012; Liang, Paulo, Molina,
Clyde, & Berger, 2012) of the BayesFactor package 0.9.12-2 (Morey & Rouder, 2015) in R 3.2.3.
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Block. The posterior estimate of block shows a positive slope of 0.025 (95% CI is 0.023 to
0.028) indicating that average accuracy increased by about 2.5% for each block of training.

While it is reassuring that there is a general improvement in accuracy throughout
training, one of our main questions was whether accuracy differed as a function of cate-
gory Structure. Figure 3 suggests two things: first, that accuracy in the all structure is
much higher than the intermediate and single category structures; and second, that
the learning rate may be identical across all category structures. To investigate the first
issue, we evaluated whether there was an effect of Structure on accuracy. Indeed, a model
with two predictors (Structure, coded as a three-level categorical variable, and Block) is
strongly preferred over a model containing only Block (BF > 1090 : 1). Posterior estimates
reveal that accuracy in the all condition is 0.16 higher (95% CI is 0.12 to 0.20) than the
intermediate structure, which is slightly higher than the single (0.08 more, 95% CI from
0.04 to 0.12). In order to investigate the second issue, we compared the Structure and Block
model to a more complex model that also included an interaction between Structure and
Block. The model without an interaction is strongly preferred (BF = 40 : 1), suggesting
that the rate of learning across blocks is not different in the three Structure conditions.

Our second question was whether there is evidence for an effect of stimulus Dimen-
sionality on performance. We found that there was: a model containing Dimensionality
(coded as a three-level categorical variable) and Block was strongly preferred over a model
containing only Block (BF > 107 : 1). The posterior estimates of the effect of number
of dimensions show that the only reliable difference was between the 4-feature and 16-
feature conditions, with the 4-feature one being on average 0.08 more accurate (95% CI
is 0.03 to 0.13); all other 95% confidence intervals of the difference span zero (4-feature
vs. 10-feature and 10-feature vs. 16-feature).

Of course, we are less interested in whether dimensionality or category structure alone
has an effect on learning, and most interested in whether there is an interaction: do more
stimulus dimensions, as hypothesized, hurt learning in the single category structures but
not in the all category structures? To evaluate this, we compared a Bayesian mixed effects
model containing Block, Structure, and Dimensionality alone to a model with these three
variables plus an interaction term between Structure and Dimensionality. This shows strong
evidence in favor of the model containing the interaction (BF > 108 : 1), indicating that
additional features have different effects on learning in different category structures.

What differences drive this interaction? Figure 3 suggests that accuracy in the in-
termediate and single category structure conditions decreases much more strongly as the
number of stimulus features increases. In order to investigate this quantitatively, we con-
ducted a post-hoc analysis of the effect of Dimensionality on accuracy within each category
structure. The results, shown in Table 1, indicate the Bayes factor in favor of a mixed effects
model containing Dimensionality and Block relative to a model containing only Block. The
results show that for the intermediate and single structures, the model with the higher
Bayes factor includes the Dimensionality predictor, suggesting that the number of features
affects learning for these structures. However, for the all structure the preferred model
based on its Bayes factor is one without Dimensionality as a predictor. This is consistent
with our hypothesis that additional features should hurt learning much more strongly when
categories do not follow a family resemblance structure.
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All Intermediate Single

Bayes factor 0.3:1 108 : 1 1011 : 1
4 vs. 10 0.06 (-0.05 to 0.06) 0.08 (0.01 to 0.14) 0.10 (0.03 to 0.19)
10 vs. 16 -0.02 (-0.08 to 0.03) 0.04 (-0.03 to 0.10) 0.03 (-0.04 to 0.11)
4 vs. 16 -0.02 (-0.08 to 0.04) 0.11 (0.05 to 0.18) 0.15 (0.07 to 0.22)

Table 1
Bayes factors and parameter estimates for the post-hoc analyses of the effect of stimulus Dimen-
sionality for each category Structure in Experiment 1. The first row indicates the Bayes factor in
favour of a model with Dimensionality and Block as predictors relative to a model with only Block; all
other rows show the posterior estimates of the differences between Dimensionality conditions within
that category structure. Results indicate that the effect of stimulus dimensionality was larger in the
single and intermediate than the all category structure. The 95% confidence interval estimates
are shown inside the brackets.

Summary

Experiment 1 suggests that increasing the number of features has a differential impact
depending on the underlying category structure. In the two conditions that contain a
single highly predictive feature and other features that are less predictive (single and
intermediate), learning is clearly improved when there are fewer features overall. This is
most evident in the final two columns of Table 1, which show 10-14% increases in overall
accuracy for learning from four rather than 16 features in the intermediate and single
conditions. The same advantage does not occur in the all category structure .

The fact that learning was not impaired in the all category structure may not be
particularly surprising, given that all features were equally useful and there were no features
that were less predictive. In that sense it is the lack of advantage for more features that
is perhaps more surprising, especially since other studies have shown a learning advantage
when there are additional features (e.g., Hoffman & Murphy, 2006; Hoffman et al., 2008).
One possibility here is that performance in the all condition reflects a ceiling effect. Since
all of the features were 90% predictive, it could be that the task was quite easy no matter
how many features there were. We test this directly in Experiment 2 by investigating
only family resemblance structures, but manipulating the degree to which the features are
predictive of the category label.

Experiment 2

This experiment explicitly tests whether additional features have an effect on category
learning within family resemblance categories when the features are less predictive than in
the previous experiment. If there is no effect of the number of features on learning, we can
be more certain that the differences due to category structure found in Experiment 1 are
actually due to category structure rather than to the informativeness of the features. We
test this by systematically manipulating the predictiveness of the features. Does this affect
the degree to which additional features affect learning?
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Method

Participants. 888 people (459 male, 425 female, 4 other) were recruited via Amazon
Mechanical Turk. As before, the high number of participants reflects the fact that we ran
two experiments with slightly different methodologies and pooled the results since they were
qualitatively identical (N = 436 for the version without the timer, N = 452 for the version
with it). Participants ranged in age from 19 to 74 (mean 34.6). They were paid US$2.00
for completion of the task, which took 12 minutes. Data from an additional 37 participants
were excluded from analysis, either from failure to complete the task (32 participants) or
participating in an earlier version of this study (5 participants).

Design. The task and stimuli were identical to Experiment 1, with participants
randomly allocated in a 3 × 3 between-participants design. As before, we manipulated
the Dimensionality by altering the number of features present in the stimuli to make three
conditions: 4-feature (N=286), 10-feature (N=327), and 16-feature (N=275). Un-
like before, all the category structures were family resemblance structures, with all features
being equally predictive of the category. This time we manipulated the degree of Predic-
tiveness to make three conditions: 70% predictive (N=310), 80% predictive (N=258), and
90% predictive (N=320). The 90% condition was a replication of the all structure in
Experiment 1.

Procedure. The procedure was identical to Experiment 1. Similar to the previous
experiment, in one version of the experiment (N = 436), there was no time limit for pro-
viding a response on each trial. In the other version of the experiment (N = 452), there
was still no time limit, but they saw a timer that slowly decreased (see Figure 2), and they
received more points for faster responses.

Results

How was learning affected by Dimensionality and Predictiveness? We evaluated this
question by comparing Bayesian mixed effects models that included some combination of
Block as a continuous variable and Dimensionality and Predictiveness as discrete variables.
Reassuringly, we found that people did indeed learn over the course of training: a model
including Block was strongly preferred over a model that only contained a random effect
for each participant (BF > 1074:1). As before, posterior estimates suggest that average
accuracy increased by about 2.3% for each block of training (95% CI is 0.021 to 0.026).

How did the Predictiveness of features affect learning? As Figure 4 shows, and as
one would expect, overall learning was lower in categories with lower predictiveness. This
is borne out in a Bayesian model comparison between a model with Predictiveness (coded
as a three-level categorical variable) and Block as compared to a model with only Block
as a predictor. The two-predictor model was strongly preferred (BF > 10116 : 1), and the
posterior estimates indicate that accuracy was 11% higher for both the 90% to the 80%
condition (CI is 0.07 to 0.14) as well as the 80% to the 70% condition (CI is 0.08 to 0.15).

Our main question, of course, was whether additional number of features had an im-
pact on categorization accuracy. Figure 4 suggests that Dimensionality does not have an
effect on learning, and a Bayesian mixed effects model comparison confirms this: a model
containing only Block was preferred (BF > 17 : 1) over a model containing both Dimension-
ality and Block. This is further supported by post-hoc analyses that find strong preference
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Figure 4 . Results from Experiment 2. Mean accuracy across the three Predictiveness and
Dimensionality conditions. While the mean performance decreased as the level of Predictiveness
was reduced, within each Predictiveness condition there was no change based on the number of
features. Error bars show 95% confidence intervals, and the dotted line reflects chance performance.

for a model containing Block and Predictiveness predictors over all models containing Di-
mensionality.

Summary

Experiment 2 provides strong evidence that the number of features does not affect
learning when the category structure follows a family resemblance pattern, and that this
cannot be attributed to a ceiling effect. Interestingly, learning in the 70% predictive family
resemblance category structure is only slightly above chance (M = 0.63 in the final block).
Despite the fact that there was evident room for improvement, there was no benefit of
increasing the number of features, suggesting that these results do not reflect a floor effect
either. Taken in conjunction with Experiment 1, these findings suggest that the curse
of dimensionality affects people more with category structures where correct classification
relies on a single feature. Indeed, in family resemblance categories, there appears to be no
detrimental effect of additional features at all (but neither is there much benefit).
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Category learning models

These empirical results deserve some theoretical explanation. Our design was moti-
vated by the intuition that the curse of dimensionality should have a differential impact in
different situations, in a fashion not dissimilar to what we actually observed. Specifically,
we predicted that if people learn by searching for predictive features, then the curse of di-
mensionality should hurt performance in situations where only a few features are predictive,
but should have little impact when many features are predictive. Crucially, this prediction
assumes that people have capacity limitations that prevent them from learning or using all
of the features at once. In the family resemblance conditions, for instance, adding more fea-
tures means that each stimulus contains more independent information about the category
label, and one might intuitively expect performance to improve when more information is
made available. No such effect is evident in our data, suggesting that capacity limitations
play a critical role in governing category learning.

Armed with these insights, in the rest of this paper we evaluate three category learning
models that incorporate different capacity limitations on the learner. Which best explains
the empirical data from Experiments 1 and 2? The three models are designed to vary
systematically in the strength of the capacity limitation they impose. At one end of the
spectrum, we consider a statistical learning model that can attend to all stimulus informa-
tion available in the task, learns by Bayesian belief updating, equivalent to a probabilistic
prototype model. At the other end, we consider a hypothesis testing model that can only
attend to a single feature at a time and learns by applying simple belief updating rules.
In between these extremes we consider a statistical learning model in which learning and
decision-making are limited.

Notation

We briefly describe the notation used to describe the each of these models. The
input for each trial is a D-dimensional stimuli vector x = (x1, x2, . . . , xD), where D is the
dimensionality of the stimulus and each xi is a binary feature, i.e. xi ∈ {0, 1}. The predicted
category response ŷ ∈ {0, 1} for trial N is defined by the feature information from trial N
along with the representation learned by the model based on the previous N − 1 trials.

An ideal observer model

First, we describe the details of an ideal statistical learner which we call optimal. In
our experiments, the stimuli were generated by following the principle of class-conditional
independence (e.g., Anderson, 1990; Jarecki, Meder, & Nelson, 2013). As long as one
knows the true category label y, then the probability of any particular feature value xi

is completely independent of any other feature. As a consequence, every category can be
represented in terms of a single feature vector θ = (θ1, . . . , θD) where θi = p(xi|y) describes
the probability that feature i will have value xi. Although class-conditional independence is
not always satisfied in real life where feature correlations are possible (Malt & Smith, 1984),
it is a reasonable simplification in many situations (Jarecki et al., 2013), and one that is
appropriate to our experimental design. Moreover, because the category can be represented
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in terms of a single idealised vector θ that describes the central tendency of the category,
it is broadly similar to standard prototype models (Posner & Keele, 1968).4

Formally, we implement this statistical learning model using a naive Bayes classifier
which makes the same assumption of class-conditional independence. In it, the posterior
probability that novel object x belongs to the category y is given by:

p(y|x) ∝
D∏

i=1
p(xi|y)p(y) (1)

where the marginal probability p(xi|y) is given by the posterior expected value of θi given the
previously observed category members. Specifically, if the learner has observed ny previous
exemplars that belong to category y, of which nyi were observed to have the feature xi,
then the model estimates the following probability:5

p(xi|y) = E[θi|nyi, ny] = nyi + 1
ny + 2 (2)

Applying a similar logic, the model learns the base rate of the category labels over
time, and so the prior probability p(y) of category y is computed by applying a (smoothed)
estimate of the observed base rate so far:

p(y) = ny + 1
n+ 2 (3)

Finally, as an ideal observer model, the optimal model is assumed to always choose
the category label with highest posterior probability, and thus the response ŷ is selected
deterministically by applying the rule:

ŷ = arg max
y

p(y|x) (4)

The optimal model is appealing for two reasons. Firstly, it serves as an ideal observer
model for this experiment, insofar as it is a statistical learning model whose structure
precisely captures the structure of the task (i.e., conditional independence) and learns the
specific categories by applying Bayes rule. As such it can reasonably be claimed that the
performance of this model represents the upper bound on what might be achievable in the
learning task. Secondly, because of its connection to prototype models, it may be taken as
a representative of a broad class of “family resemblance models” that have dominated the
theory of category learning since the 1970s. This model is not intended to be a fully general
model of human categorization, but rather to act as a gold standard to compare to human
performance in these tasks across different levels of dimensionality, category structure, and
feature predictiveness.

4Although we do not explicitly evaluate any exemplar models (Nosofsky, 1986) or mixture models
(Sanborn, Griffiths, & Navarro, 2010; Love, Medin, & Gureckis, 2004), we expect that their behavior would
be very similar to the prototype model on these category structures. Exemplar models are perfectly capable
of learning prototype-like category structures (Nosofsky, 1988), and as such we would not expect this ex-
perimental design to be predictive as regards to the prototype vs. exemplar distinction. Rather, we expect
that the lessons implied for the optimal model would turn out to be similar for exemplar models and any
other sufficiently rich statistical learning model.

5Formally, this expression arises if the learner places a uniform prior over an unknown Bernoulli proba-
bility θi and updates those beliefs via Bayes’ rule. It is equivalent to the Laplace smoothing technique.
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A hypothesis testing model

The second model we describe is a hypothesis testing model which we call rule, that
classifies objects into categories by considering hypotheses based only on a single feature.
On each trial, the model considers a single hypothesis hia for the rule that defines how it
makes categorization decisions. All of the rules in the hypothesis space take the follow-
ing form: if xi = a then ŷ = 0, otherwise ŷ = 1, such that each rule learns to use
one feature (a) to predict the category outcome (ŷ). The space of hypotheses is defined
by the set of features. As an example, a particular hypothesis the model might use is:
If the third feature takes value 0 (i.e. x3 = 0), then respond bivimia (ŷ = 0),
otherwise respond lorifen (ŷ = 1). Relative to other rule-based models in the literature
(e.g., Nosofsky, Palmeri, & McKinley, 1994; Goodman, Tenenbaum, Feldman, & Griffiths,
2008) this is fairly simplistic because it can never adapt and use more than a single feature
to make a category judgment. This was deliberate because we wanted to consider a model
at the other end of the spectrum, capturing the important intuition that the learner attends
to and uses only one feature at a time.

The rule model learns by updating the utility u of every hypothesis in the hypothesis
space. All utility values are initialized to 0.5 at the start of the learning process and are
bounded between 0 and 1. At the end of each trial, the model updates the utility of
the currently-considered hypothesis only, and it does so by assuming that the utility is
proportional to the number of correct decisions that the rule has led to on those trials
where the learner was considering that rule. Formally, this utility function is denoted:

u(hia) = 1 + (correct predictions with hia)
2 + (trials with hia) (5)

At the end of every trial, the model updates the utility of the current hypothesis. If it makes
the correct prediction, the hypothesis is retained for the next trial, otherwise it is discarded
and a new hypothesis is selected from the set of hypotheses with probability proportional
to the utility, as in Equation 6:

p(hia) = u(hia)∑
x,y u(hxy) (6)

A limited capacity statistical learner

The optimal and rule model differ in several respects, and if one of them learns
in a more human-like fashion than the other we would like to know why this is the case.
The optimal statistical model employs a category representation that closely mirrors a
probabilistic prototype, whereas the rule model represents categories using simple decision
rules. The optimal model updates its category representations using all the information
available to it, whereas the rule model only updates its beliefs about the one specific rule
it is currently considering. Finally, the optimal model makes its categorization decisions
by always choosing the most likely category, whereas the rule based model – though also
deterministic – is entirely capable of following a particular rule to make a correct decision
and then immediately discarding that rule.
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Given these differences, we developed a limited model variant of the optimal sta-
tistical learning model that retains the prototype-style representation but is limited in both
how many features to use when making decisions and the ability to learn from their obser-
vations.

As in the optimal model, the category label selected on a given trial by the limited
model is dictated by Equation 4. However, instead of multiplying across all features when
making a decision as in Equation 1, a single feature f drives decision making:

p(y|x) ∝ p(xf |y)p(y) (7)

Learning is also limited in this model, which we implemented by applying Equation 2
to only a single feature on each trial. This limitation captures the same qualitative principle
that underpins the single-hypothesis belief updating procedure used by the rule model.
Highlighting this connection, the updating process of the limited model shifts its attention
across features using a utility-based rule that is almost identical to Equations 5 and 6 for
the rule model:

u(fi) = 1 + (correct predictions with fi)
2 + (trials with fi)

(8)

p(fi) = u(fi)∑
x u(fx) (9)

The limited model is thus very restricted: it absorbs information only from a single
attended feature, and this is the only feature that contributes to the categorization decision.
The differences between this model and the rule model are fairly modest.

Model results

Each of the three models were simulated 10,000 times in each of the experimental
conditions from both experiments, where each simulation mimicked a 100-trial experiment.
On each trial, a new stimulus was generated in exactly the same manner as the experiment.
The model then made a prediction of the category label of the current stimulus, and then
received feedback which it would use to update its category representation.

Figures 5 and 6 shows the correlation between human performance and the predictions
from each of the three models across each condition. There are a number of observations
we can make based on the different scatterplots shown here. First, the results show that
the optimal model consistently outperforms humans in all conditions. While this provides
a theoretical upper bound for how well people could do in the task, the results show that
this limit was not attained in any of the conditions.

Second, both figures demonstrate that the predictions from both the limited and
rule models fit reasonably well to the human data. In some of the conditions, they both
appear to underpredict human performance, but they nevertheless capture the main qual-
itative patterns across both experiments. In particular, when categories are not family
resemblance structures, both models predict that more features should hurt performance,
and when the category structure is family resemblance based, both models predict that
additional features should make no difference. Since this behavior precisely matches the
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Figure 5 . Scatterplot comparing the predictions of the three computational models
to human performance in Experiment One. Each panel contains a dot for the performance
at each block and across all Dimensionality conditions. Our results show that the optimal model
consistently overestimates performance, while both the limited and rule models both closely match
human performance across the different conditions in Experiment One.

qualitative pattern shown by people, it is perhaps no surprise that the rule and limited
models provide a strong quantitative fit to human performance.

Perhaps somewhat disconcertingly, neither the quantitative nor the qualitative fits
give compelling reason to prefer either the rule or limited model over each other. That
said, it is important to realise that this analysis so far reflects aggregate data: how well
each model predicts the overall population average amongst our participants. Yet we know
that population averages may be highly misleading when the goal is to infer what kinds of
individual processes give rise to the behavior in question.

For this reason we also calculated which model best fit each of the individuals in
each of the experiments (as reflected in the RMSE between each individual’s accuracy
and the model predictions from the same experimental condition as the individual), as
shown in Figure 7. A random guessing model was also included in the set of models,
where the performance for each block was set at chance level (50%). Although there is
substantial variation across people, in the majority of conditions most people’s performance
best matches the limited model. The only exception is that in the most difficult conditions
a substantial number are best fit by the random model, suggesting these participants were
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Figure 6 . Scatterplot comparing the predictions of the three computational models to
human performance in Experiment Two. Each panel contains a dot for the performance at
each block and across all Dimensionality conditions. Similar to the scatterplot in Figure 5, we find
that the optimal model performs far better than humans on this task, while both the limited and
rule models both track human performance closely.

unable to learn the task. The optimal model describes performance the least well of the
three theoretically motivated models.

Discussion

The term “curse of dimensionality” has been applied to a range of problems in ma-
chine learning, statistics and engineering, all of which share the common property that the
space of possible solutions to an inference problem grows extraordinarily rapidly as the
dimensionality increases. The same phenomenon applies to human category learning, and
our goal in this paper has been to explore how the curse plays out for human learners.

At an empirical level we observed a clear pattern in which the curse of dimensionality
is strongly mediated by the structure of the categories that need to be learned. Categories
like those in the single condition, in which only a small number of features are relevant for
predicting category membership, are heavily affected by dimensionality because the search
problem (identifying the predictive feature) becomes harder as more irrelevant features are
added. In contrast, the number of features does not appear to affect learning for family



CURSE OF DIMENSIONALITY 17

All Intermediate Single

4
10

16

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Block

P
ro

po
rt

io
n 

of
 p

ar
tic

ip
an

ts
 b

es
t f

it 
by

 e
ac

h 
m

od
el

Model  Optimal Limited Rule Random 

(a) Experiment 1

90% 80% 70%
4

10
16

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Block

P
ro

po
rt

io
n 

of
 p

ar
tic

ip
an

ts
 b

es
t f

it 
by

 e
ac

h 
m

od
el

Model  Optimal Limited Rule Random 

(b) Experiment 2

Figure 7 . Proportion of individuals who are best fit by each of the models in both
experiments. For each individual, we calculated the RMSE between their performance and each
of the computational models, and assigned them to the model whose predictions led to the smallest
RMSE. Across most of the conditions in both experiments, most people’s pattern of performance
most closely matched the predictions of the limited model, and not the rule model, despite the
predictions of both models being very similar in the aggregate. The main exception to this pattern
is in the more difficult conditions like the single category structure, in which a model consistent
with random guessing did the best.

resemblance categories in which all features are somewhat predictive of category mem-
bership. A comparison of several computational models indicates that people’s individual
performance is best explained by model where learning and decision-making both proceed
based on one feature at a time. This pattern was observed across the different category
structures we tested, suggesting that people were not using different learning approaches to
different category structures. Additionally, this result is consistent with theories of category
learning that begin with single features that can be combined later on, such as Combination
Theory (Wills, Inkster, & Milton, 2015), rather than beginning from the overall stimulus
and dividing it into distinct attributes.

One of the main conclusions from this work is that it is not very meaningful to discuss
the effect of dimensionality without considering what kind of category structure is being
learned. In fact, the role of category structure may help explain away apparent differences
in the literature. For instance, previous research indicating that additional features hurt
performance used features that were not predictive of category membership (Bourne & Res-
tle, 1959; Edgell et al., 1996), consistent with our single condition in Experiment 1. Other
studies that found that adding features did not have any effect used family resemblance
categories, consistent with the all conditions in both of our experiments (Hoffman and
Murphy (2006) Experiments 1 and 2, Minda and Smith (2001) Experiment 4, Hoffman et
al. (2008) Experiment 1). There were only two results we were not able to replicate, both
reflecting an improvement in learning with more features (Hoffman and Murphy (2006)
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Experiment 3 and Minda and Smith (2001) Experiment 1). However, in both of those stud-
ies, other aspects of category structure covaried with the number of features, providing an
alternate explanation for results that differed from ours. For instance, in Experiment 1 of
Minda and Smith (2001), the categories with fewer features were less structured, and when
this confound was addressed in Experiment 4 of that paper, the effect went away.

Our computational work explains how these apparently qualitatively different effects
for different kinds of categories can all emerge parsimoniously from one unified model. A
model with limited capacity predicts that additional features should neither hurt nor help
in categories with family resemblance structure, since subsequent features provide the same
amount of information as existing ones. However, the same limited-capacity model should
struggle in more rule-based categories, when learning involves searching over the space of
features to identify the (few) predictive ones. The effect only occurs for a learner who is
limited enough in capacity that they cannot simultaneously learn over all features at once.

Broader implications for human learning

The fact that human learning deviates systematically from the optimal model is
theoretically interesting and highlights an important difference between real world learning
and many category learning experiments. Both our experiments had features with class-
conditional independence, in which the stimulus features are conditionally independent of
one another as long as one knows the category to which the stimulus belongs. This as-
sumption does not hold in general, but in some situations it might provide a reasonable
first approximation. Indeed, people do appear to assume class-conditional independence,
at least at first, in some category-learning tasks (Jarecki, Meder, & Nelson, in press).

However, from a computational modeling perspective, it is important to recognize the
limitations that this assumption imposes: the reason that our ideal observer model is able to
perform better on family resemblance categories as the number of features increases is that
it exploits the fact that every additional feature conveys independent information about
the category. When class-conditional independence holds, family resemblance categories
become easier to learn as the dimensionality increases. This does not match the pattern we
observed in our data, in which people’s performance on family resemblance categories was
the same regardless of the number of features in the stimuli.

Instead, the pattern of learning in these tasks is more accurately predicted by a
capacity limited model that only processes a modest amount of information on each trial.
However, the reason why people only process a limited amount of information is not clear.
One possible interpretation is that memory limitations may restrict how people are able
to encode these novel stimuli in memory or reason about the relationship between features
and category labels. Depending on the relationship among features and between them and
category labels, in real life one might end up making better categorization decisions by using
a limited number of predictive features rather than attempting to process all information
inherent in the stimuli. In other words, human learners might differ from our optimal
statistical learning model not because of the limits of human cognition but because human
cognition is shaped by an environment in which class conditional independence is a poor
assumption, and that human learners are better described by other kinds of inductive biases.

The question of what other inductive biases are required to explain how humans are
affected by the curse of dimensionality in some cases and not others is beyond the scope
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of this paper, but we can speculate about possible answers. One possibility is an inductive
bias for sparsity (Gershman, Cohen, & Niv, 2010), which assumes that only one (or a lim-
ited) number of features is relevant for categorization. Thus, the relevant features for this
task could be learned through selective attention, a process where attentional weights for
particular features increase or decrease based on their ability to make correct classification
decisions. This kind of approach has been successfully employed by a number of existing
models of categorization to explain other patterns in human category learning (Nosofsky,
1986; Kruschke, 1992), and is a potential future avenue of exploration for a richer explana-
tion of how people learn categories with many features.

A second, alternative approach towards lifting the curse dimensionality is to reduce
the number of features that are represented or encoded in the first place. Such methods
focus on reducing the number of dimensions via manifold learning (Tenenbaum, 1997) or
using structured representations (Kemp & Tenenbaum, 2009; Tenenbaum, Kemp, Griffiths,
& Goodman, 2011; Lake, Salakhutdinov, & Tenenbaum, 2015). These kinds of approaches
have been pursued with considerable success in semantic representation (Griffiths, Steyvers,
& Tenenbaum, 2007; Landauer & Dumais, 1997). It is, of course, possible that human learn-
ing is versatile enough to incorporate the fundamental insights from both exploiting limited
memory and attentional capacities and reducing the effective dimensionality of incoming
stimuli. Pursuing these issues further is a matter for future work.
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