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Abstract

We describe two experiments designed to test whether the ease
with which people can label features of the environment in-
fluences human reinforcement learning. The first experiment
presents evidence that people are more efficient at learning to
discern relevant features of a task when candidate features are
easier to name. The second experiment shows that learning
what action to take in a given state is easier when states have
more readily nameable verbal labels, an effect that was espe-
cially pronounced in environments with more states. The in-
teraction between CLIP, a state-of-the-art AI model trained to
map images to natural language concepts, and established hu-
man RL algorithms, captures the key effects without the need
to specify condition-specific parameters. These results suggest
a possible role for language information in how humans repre-
sent the environment when learning from trial and error.

Keywords: reinforcement learning, state, task representation,
language

Introduction

Adaptive behavior depends on our ability to change our ac-
tions based on context. In reinforcement learning (RL), this
context dependency is captured by the notion of state — fea-
tures of the current context that are relevant for the task at
hand. For many real world tasks, the relevant features are
rarely known a priori; instead, we learn them from experience
with our environment. For instance, a traveler navigating in a
new city might learn that they can decode their location along
the North-South axis from their position relative to certain
landmarks.

How humans learn to represent states is a topic of ac-
tive research in cognitive science (Gureckis & Love, 2009;
Niv, 2019). Computational accounts have emphasized the
importance of abstraction, hierarchy and compression (Ho,
Abel, Griffiths, & Littman, 2019; Eckstein & Collins, 2020;
Lai & Gershman, 2021). And mechanistic approaches have
sought to formalize selective attention as a dynamic process
by which agents learn relevant state features from experi-
ence (Kruschke, 1992; Le Pelley, Haselgrove, & Esber, 2012;
Leong, Radulescu, Daniel, DeWoskin, & Niv, 2017; Braun-
lich & Love, 2021).

One cognitive function that exhibits many of the proper-
ties thought to be important for state representation is lan-
guage (Tam et al., 2022). Language representations are in-
herently low-dimensional and flexible at different levels of
abstraction (Piantadosi, Tenenbaum, & Goodman, 2016; An-
tonello, Turek, Vo, & Huth, 2021). Several recent studies in
artificial reinforcement learning have built on this insight to
demonstrate the benefits of augmenting RL agents with lin-
guistic information (Yao, Rao, Hausknecht, & Narasimhan,
2020; Tuyls, Yao, Kakade, & Narasimhan, 2022).

Yet mechanistic models rooted in the neurobiology of RL
do not yet provide a clear account of how language might
interface with trial and error learning. In some of these
accounts, language is considered a more complex process
downstream from simple reinforcement learning and is thus
ignored. In this study, we begin to explore the role of lan-
guage in modulating processes previously thought to reflect
simple reinforcement learning. We start from the hypothe-
sis that language may provide a representational basis over
which reinforcement learning and action selection can occur.
Rather than being downstream, language-mediated processes
may provide input to reinforcement learning mechanisms.

We focus on one specific aspect of language, the name-
ability of environmental features. People more easily learn to
categorize concepts when features of those concepts are eas-
ier to name in language (Zettersten & Lupyan, 2020; Lupyan
& Zettersten, 2020), even controlling for lower level percep-
tual discriminability. Because category learning and rein-
forcement learning both require mapping multidimensional
perceptual observations to states, we expected nameability to
also influence trial and error learning of action policies. In
particular, if language provides a set of candidate state fea-
tures for reinforcement learning, people should learn more
efficiently when features of the environment are more mean-
ingful and nameable.

We study the effects of nameability in two task environ-
ments: one in which selective attention has been shown to
constrain reinforcement learning to relevant features (Niv,
2019) (Experiment 1); and another in which learning has
been shown to depend on working memory (Collins & Frank,
2012) (Experiment 2). We find that nameability facilitates
learning which features of a task are relevant; and it also pro-
motes more efficient learning of action policies, in particular
for larger state spaces. Our findings suggest the intriguing
possibility that language constrains how people learn to rep-
resent goal-directed tasks. We propose a modeling approach
leveraging state-of-the art Al models in combination with re-
inforcement learning algorithms to help explain our results.

Experiment 1

In the first experiment, we tested the effects of language on
representation learning. Specifically, we asked whether the
extent to which features of the environment are easier to name
enables more efficient learning to attend to relevant features
of a task (Niv, 2019). An effect of nameability would sug-
gest that selective attention during learning is influenced by
language processes related to naming.



Method

Participants 98 participants were recruited via the online
platform Prolific. They received as compensation a flat rate
of $3 plus a bonus based on their performance on the task.

Operationalizing nameability To select stimuli for our ex-
periments, we followed Zettersten and Lupyan (2020). In
their study, the authors quantified nameability by measur-
ing the extent to which a large number of human participants
agreed on a common label for a feature. In particular, Simp-
son’s diversity index quantifies agreement while accounting
for (1) the number of possible labels; (2) the frequency with
which people use each label. For both Experiment 1 and
Experiment 2, we thus selected features that Zettersten and
Lupyan (2020) found to differ in nameability on the basis of
Simpson’s diversity index.

To independently validate the stimuli, we conducted a post-
experiment manipulation check. This check consisted of ask-
ing participants “what word would you use to describe” each
feature (displayed as an individual image). This allowed us
to directly compute Simpson’s diversity from language data
provided by participants in our experiments.

Procedure Participants learned from trial and error to make
repeated choices between three stimuli referred to in the in-
structions as ‘creatures’ (Fig. 1A). Each creature was defined
by one of three colors and one of three shapes. On each trial,
the features within each dimension were reshuffled to form
new stimuli (i.e. all six features were always present, but in
different stimulus configurations). Participants had 5 seconds
to select one of the three creatures. After the participant made
their choice, they received a binary reward. Participants were
instructed that at any given time, one of the colors or one of
the shapes was designated as the “magic feature”. Choosing
the creature that possessed the magic feature was rewarded
with 0.75 probability. Choosing any of the other 2 creatures
was rewarded with only 0.25 probability. The magic feature
thus defines a correct state representation for the task: partic-
ipants could maximize reward by distinguishing stimuli only
based on the presence or absence of the magic feature, while
ignoring features for the other irrelevant dimensions.

We hypothesized that participants would be more efficient
at learning the relevant feature when candidate features are
easier to name. To test this, we manipulated nameability
in a within-subjects design. Within one of the categories
(color or shape), three of the features were more nameable,
and three were less nameable, yielding two conditions — high
and low-nameability (Fig. 1B). Note that colors were se-
lected such that there were little to no differences in percep-
tual discriminability as measured in an independent norming
study; and shapes were relatively matched on shape com-
plexity (Zettersten & Lupyan, 2020). Each participant ex-
perienced 12 blocks in pseudo-random order, 6 in the high-
nameability condition and 6 in the low-nameability condition.
Each block (“round” to participants) was defined as a period
of 18 trials during which the magic feature remained constant.

Choice (< 5s)

Feedback (1.5s)

H%mb'y N
’i% ‘(3 Qy

Low-nameability

W

Al a
% ®p

Figure 1: Experiment 1 procedure. A: Example trial se-
quence. B: The stimulus set in the high-nameability condi-
tion is shown on the left. In this condition, colors are more
aligned with natural categories and shapes are more recogniz-
able than in the low-nameability condition (right). Example
stimuli that could appear on a single trial are circled.

Computational modeling

Work on learning task representations has proposed attention-
weighted reinforcement learning as a candidate mechanism
for learning what features are relevant for a task (Kruschke,
1992; Leong et al., 2017). To formalize the hypothesis
that selective attention during reinforcement learning is influ-
enced by language, we built a simple reinforcement learning
agent that learns to update feature weights through trial and
error. As in classic models of associative learning (Pearce
& Mackintosh, 2010), we assumed that each feature is up-
dated in proportion to its own learning rate (or “associabil-
ity”). This learning rate was determined by how nameable
each feature is. The full model is specified below.

Feature reinforcement learning To make a choice, the
agent computes the value of each stimulus as a linear combi-
nation of features, equally weighted by dimensional attention
(that is, learning is not biased towards color or shape):
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Once a choice is made, the weights of the chosen fea-
tures are updated in proportion to the prediction error, times
a learning rate determined by each feature’s nameability.

w1 (fe) = wi(fe) ()[R — Vi(Se)]- 3

For all simulations, we presented the agent with the same

sequence of stimuli that participants experienced in the actual

experiment. Feature weights were initialized at 0. Choice
softmax temperature 3 was fixed at 10.

A computational index of nameability Classic models of
reinforcement learning typically treat features as uniformly
learnable, and do not readily accommodate humans’ priors
for how states should be structured around language. As a
first step in trying to address this limitation, we combined
feature reinforcement learning with CLIP (Radford et al.,
2021), a recent deep neural network architecture trained on
400M image-caption pairs sourced from the internet. CLIP is
trained by trying to match a given image with its correspond-
ing caption, and we hypothesized that the multimodal rep-
resentational space learned by CLIP would be a good candi-
date for encoding language priors for two main reasons. First,
CLIP contains knowledge about a very large number of mul-
timodal concepts (Goh et al., 2021), and second, CLIP can
flexibly encode an arbitrary set of natural language descrip-
tions to use for zero-shot image classification (Radford et al.,
2021).

To extract a measure of nameability using CLIP, we passed
each (image) feature through the vision encoder of a pre-
trained CLIP RN50x16 network, obtaining a set of feature
embeddings. Separately, we passed the most frequent human-
generated natural language label for each feature (which we
denote as [ € L), through the corresponding text encoder of
CLIP to obtain a set of label embeddings. For each image
feature, we used CLIP’s zero-shot classification procedure to
classify it amongst the set of modal labels, by computing
the dot product between a given feature embedding and all
possible label embeddings, followed by applying a softmax
along the label dimension. The resulting probability distri-
bution represents how likely each label matched a given fea-
ture. We reasoned that more nameable features should also be
more separable in the representational space learned by CLIP;
and that this separability will be indexed by a feature-specific
classification entropy:

H(f)=—=Xip(l)log(p(1)). “)

To obtain an index of nameability that can be mapped onto
(0, 1) bounded learning rates in a reinforcement learning set-
ting, we passed classification entropy H (f) through a reverse-
sigmoid transform:

1
n(f):m~ )

Intuitively, this procedure captures a naming process by
which humans label the features before any learning has taken

place (i.e. how likely is this visual concept to be “blue”, “pur-
ple” etc). Features that are easier to name should result in a
lower classification entropy, while features that are harder to
name should result in a higher classification entropy.
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Figure 2: Experiment 1 nameability index. A: Manipu-
lation check. Colors (top) and shapes (bottom) ordered by
Simpson’s diversity. For two of shapes (circled), condition
labels were flipped based on participants’ language data. B:
Classification of visual features was performed over the la-
bels that humans most frequently used to describe each im-
age. Each feature (e.g. “red”, “frog”, etc.) was provided
to CLIP as a single image. Images that were easier to clas-
sify had lower classification entropy. C: Learning rates in
the high- and low-nameability conditions for Experiment 1,
obtained by passing CLIP classification entropy through a
reverse-sigmoid transform.

Results

Manipulation check To verify that participants judged fea-
tures in the high-nameability condition to be more nameable,
we computed Simpson’s diversity based on the labels that
participants used to describe each of the features. In gen-
eral, participants were more likely to use consistent labels
for stimuli in the high-nameability condition (Fig. 2A). We
also found that our computational index of nameability de-
rived from CLIP broadly tracks these differences, such that
more nameable features and shapes had lower classification
entropy (Mpen = 1.42, My,,, = 1.92, Fig. 2B). Computing
feature-level learning rates by passing the classification en-
tropy through a reverse-sigmoid resulted in lower learning
rates on average for features in the low-nameability condition
(Fig. 2C).
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Figure 3: Experiment 1 results. Empirical (left) and sim-
ulated (right) fraction correct. Error bars denote 95% confi-
dence intervals.

Nameability facilitates representation learning We
found that, in line in with our hypothesis that learning
should be easier when features of the environment are
more nameable, participants were more accurate in learning
the task-relevant feature in the high-nameability condition
(paired-sample t-test, 7(97) = 2.30, p < 0.03, Fig. 3, left).

We reproduced these effects by simulating behavior from
a feature reinforcement learning model that learns to up-
date features weights in proportion to nameability (Fig. 3
right). Notably, the performance difference emerged only by
allowing each feature’s learning rate to vary as a function of
nameability. That is, learning rates were independently deter-
mined by a language model that operated on raw pixels, with-
out specifying any a priori differences between conditions in
model parameters.

Discussion

In Experiment 1, participants had to learn from trial and error
which features of a multidimensional environment are rele-
vant for predicting reward. Participants were more efficient
at learning the correct state representation when features of
the environment were easier to name. These results lend
support to the idea that attentional selection during repre-
sentation learning is at least partly determined by language-
based constraints on information processing (Lupyan, Rah-
man, Boroditsky, & Clark, 2020).

Modeling results also suggest that CLIP’s multimodal rep-
resentational space captures behaviorally relevant structure
between concepts in natural language and images. Endow-
ing reinforcement learning agents with such structure sug-
gests a mechanism by which language might mediate learning
through attentional selection, enhancing both the activation
and separability of perceptual features during learning.

Experiment 2

In the second experiment, we tested the effects of language
in an environment in which reinforcement learning has been
shown to depend on working memory (Collins & Frank,
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Figure 4: Experiment 2 procedure. A: On every trial, par-
ticipants observed a symbol and selected one of three actions.
If the action was correctly matched to the symbol, they re-
ceived feedback that their action was correct (and incorrect
otherwise). B: Stimuli in the high-nameability condition (top)
and their rotated counterparts in the low-nameability condi-
tion (bottom).

2012; Collins, Brown, Gold, Waltz, & Frank, 2014). In
the original study by Collins and Frank (2012), participants
learned to associate individual stimuli with three possible ac-
tions. A set-size manipulation of the number of stimuli re-
vealed that performance drops as more stimuli are included
in the state space, suggesting a contribution of working mem-
ory processes to reinforcement learning. Here, we were in-
terested in whether more nameable features can mitigate the
drop in learning performance for larger state spaces.

Method

Participants 63 participants were recruited via the online
platform Prolific. They received as compensation a flat rate
of $5 plus a bonus based on their performance on the task.

Procedure Participants learned from trial and error to
match symbols with one of three possible actions (Fig. 4).
On each trial, participants had 3.5 seconds to select an action
using the left, down and right arrow keys. After each choice,
they received feedback about whether their action was correct
or incorrect. The correct action was randomly and indepen-
dently assigned to each stimulus. Participants were instructed
that the correct action for each symbol was independent of the
correct action for all other stimuli.

The task was divided into multiple blocks (‘rounds’ to par-
ticipants). At the beginning of each round, participants were
presented with all the symbols in the current round and asked
to take 5 seconds to familiarize themselves with the symbols.
Rounds varied in how nameable the symbols were (nameabil-
ity manipulation), as well as the number of symbols partici-



pants had to learn about (set-size manipulation). Each set
size (2-6) occurred once per participant, once in the high-
nameability and once in the low-nameability condition.

Importantly, the sequences of stimuli in the high vs. low-
nameability rounds were yoked, such that symbols were pre-
sented in the exact same order and had the same correct action
associated to them, but only differed in nameability. For ex-
ample, if the first symbol in Fig. 4B appeared on the first trial
of a high-nameability block, its rotated counterpart would ap-
pear in the same position and be associated with the same
correct action in a low-nameability block. As in the previ-
ous experiment, nameability was manipulated within partici-
pants. Each participant performed 10 blocks of the task, 5 in
the high-nameability and 5 in the low-nameability condition.
Within conditions, each symbol was presented 15 times in
pseudorandom order. The order of blocks was also random-
ized within participants. We hypothesized that when features
comprising the state space (i.e. the symbols in a round) are
more nameable, learning would be more efficient, and that
this facilitation would be especially apparent in larger state
spaces.

Computational modeling

Collins and Frank (2012) proposed Reinforcement learning
with working memory (RLWM) as a computational frame-
work that can account for the influence of remembered expe-
rience on current decisions. A recent study based on RLWM
has suggested that linguistic information primarily affects the
RL component of decision-making, via enhanced learning
rates when language information is available to distinguish
perceptual information (Yoo, Keglovits, & Collins, 2022).
Here we ask whether such an effect could be explained by
the influence of nameability on reinforcement learning, as we
found to be the case in Experiment 1.

The full formulation of the RLWM model that we used can
be found in Yoo et al. (2022). In brief, the algorithm consists
of two modules. The RL module updates the Q-value of each
state-action pair with learning rate determined by each state’s
nameability (computed here at the stimulus level rather than
per feature as in Experiment 1):

Qi11(s,a) = Qi (s,a) +n(s)[R — Qs(s,a)]. (6)
And the the WM module updates the contents of working
memory for a particular state-action pair as follows:

Wisi(s,a) < ri. @)

Working memory for all state-action pairs is also assumed
to decay on every trial with rate A:

WM, 1 (5,a)  (1—\)WM(s,a) +xNi ®)

a
Response probabilities associated with each module are
calculated independently using softmax, with an added per-
severation parameter ¢ that captures agents’ tendency to re-
peat previous actions regardless of the current stimulus and
reward.

The final response policy is assumed to be a weighted sum
of the contribution from the RL and WM modules, with mix-
ing weight o controlling the weight of the contribution of the
working memory module, and an additional parameter € con-
trolling random responding.

To compute nameability, we took the same approach as
in Experiment 1. For all simulations, we set the stimulus-
specific learning rate parameter 1 in the RL module to the re-
verse sigmoid-transformed CLIP classification entropy, mul-
tiplied by a constant scale factor. Other parameters were fixed
atA=0.2,$=0.08, 3 =100,&=0.001 and ® = 0.4.

Results

Manipulation check As for Experiment 1, we computed
Simpson’s diversity based on the labels that each participant
provided in the manipulation check that followed the main
task. Participants were more likely to use consistent labels
for stimuli that had been pre-assigned to the high-nameability
condition (Fig. 5A). We again observed (small) condition-
level differences in CLIP classification entropy (Fig. 5B),
yielding on average higher learning rates for the high- name-
ability condition (Fig. 5C).
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Figure 5: Experiment 2 nameability index. A: Manipula-
tion check. Symbols ordered by Simpson’s diversity. Blue
denotes symbols pre-assigned to the high-nameability con-
dition, and orange denotes symbols pre-assigned to the low-
nameability condition. B: As for Experiment 1, classification
of visual features was performed over the labels that humans
most frequently used to describe each image. Each symbol
and its rotated counterpart was provided to CLIP as a single
image. Images that were easier to classify had lower clas-
sification entropy. C: Learning rates in the high- and low-
nameability conditions.
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Figure 6: Experiment 2 results. A: Fraction correct as a
function of nameability condition. B: Fraction correct as a
function of condition and set size. Summary statistics from
empirical and simulated data are shown on the left and right
respectively. Error bars denote 95% confidence intervals.

Nameability interacts with state space complexity Our
results showed that participants were generally more accu-
rate when symbols were easier to name (Fig. 6A left, paired-
sample t-test, #(51) = 3.92,p < 0.001). Strikingly, this ef-
fect was driven by differences in environments in which the
set-size was larger (Fig. 6B left, repeated measures ANOVA,
condition by set-size interaction, F(4,204) = 2.84, p < 0.05).
In other words, as the size of the state space increased, more
nameable states contributed to more efficient learning.

As was the case in Experiment 1, a simple mechanism by
which nameability affects how quickly Q-values are updated
was sufficient to reproduce both effects in the context of the
RLWM framework (Fig. 6, right).

Discussion

In Experiment 2, we tested the hypothesis that when learn-
ing in large state spaces, humans can learn more efficiently
when they can potentially utilize language to represent states.
Our findings supported this hypothesis: people were more
accurate when states were easier to name; and this effect was
amplified for larger state spaces. Simulation results suggest
a potential mechanism by which nameability specifically en-
hances learning from trial and error.

General Discussion

In this paper, we ask whether nameability modulates state
representation in reinforcement learning. We find that peo-
ple are more accurate in learning which features of a task
are relevant for predicting reward when candidate features are
easier to name. We also find that people are more efficient at
learning and maintaining action selection policies when states
are easier to name. And this facilitation by nameability is
more pronounced in larger state spaces. All three findings are
consistent with a computational account that assumes more
nameable features are prioritized during value updating.

Our study leaves open the exact mechanism by which
nameability interfaces with RL. We proposed a preliminary
explanation that features of the environment that are more
easily named are selectively amplified during learning, per-
haps by language-related processes. However, it remains un-
clear if this is a language-specific enhancement or related to
semantic elaboration and/or frequency or prevalance of name-
able objects. In either case, such an effect could arise either
via top-down processes such as selective attention or working
memory; or it might reflect a bottom-up prior for which states
should be learned about in the first place (Yoo et al., 2022).

If language were to influence learning via a top-down pro-
cess, what might such a process consist of? Here we modeled
nameability effects as arising offline due to prior representa-
tions that are shaped by language. An alternative possibility is
that nameability effects could also arise in an online fashion,
as participants generate candidate language labels as repre-
sentations of the task (Ballard, Miller, Piantadosi, Goodman,
& McClure, 2018; Radulescu, Niv, & Ballard, 2019; Vong &
Lake, 2022). One avenue for future research is to determine
how to use CLIP to generate candidate labels for each feature
over the course of learning without human guidance.

Finally, the idea that language-based representations can
ground learning has recently gained significant traction in the
study of artificial agents (Andreas, Klein, & Levine, 2017;
Wang & Narasimhan, 2021; Hill, Mokra, Wong, & Harley,
2020). Here we show that humans might employ similar
strategies to optimize learning in complex environments. And
we demonstrate the potential utility of combining modern ap-
proaches to natural language processing of raw images with
reinforcement learning to capture internal representations that
are otherwise difficult to formalize.
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